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Abstract--A hnear stabihty analysts of  a viscous resuspenslon flow, which develops from an mRtally 
well-mtxed suspension flowing along a two-&menstonal channel, ts described The analysts ts based on 
a two-flutd model in whtch the non-uniformity of  the parttcle concentration dtstribution wRhm the 
suspended layer ~s ignored Numerical solutions to the relevant Orr-Sommerfeld equations for both 
temporal and spatial disturbance modes are obtamed for the special case of  a suspension of  sphencal 
parttcles m water and flowing m a duct with verttcal spacmg 0 02 m It ts found that the resuspension flow 
ts convectwely unstable and that the largest amphficatton occurs in the range of  moderate stabthty 
Reynolds numbers. It ]s also shown that a reductton m the parttcle concentration tn the feed suspenston 
and/or an mcrease m the relattve density ratio of  the sohd particles to that of  the suspendmg fluid wdl 
enhance the mstability of  the mterfacml mode 
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1. I N T R O D U C T I O N  

A few years ago, Gadala-Maria (1979) inferred from some viscometric experiments that an initially 
settled bed of negatively buoyant particles in contact with a clear fluid above it could be 
resuspended when subjected to shear even under conditions of small Reynolds numbers. This 
phenomenon of "viscous resuspension" was subsequently verified by direct observations and was 
then investigated for a handful of fully-developed, unidirectional flows (Leighton & Acrivos 1986; 
Schafiinger et al. 1990). Appropriate experiments (Schaflinger et al. 1990) have shown, however, 
that under certain circumstances the interface between the resuspended layer and the clear fluid 
above becomes unstable to interfacial waves, which are amplified as they travel downstream in a 
way similar to those observed in gravity settlers beneath inclined walls (Herbolzheimer 1983; 
Shaqfeh & Acrivos 1987; Borhan & Acrivos 1988; Borhan 1989). Thus, the determination of the 
stability characteristics of these laminar base flows is a matter of obvious interest especially since, 
in this case, such instabilities should lead to a greater degree of resuspension than if the flow 
remained laminar and steady. 

In this paper, we shall examine, on the basis of a linear analysis, the stability of the resuspended 
layer within a plane Hagen-Poiseuille flow, which is fully developed from an initially well-mixed 
suspension having a particle volume concentration ~b s and flowing along a two-dimensional duct, 
as shown schematically in figure 1. This laminar base flow was studied in our previous publication 
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(Sehaflinger e t  al.  1990), where it was shown that the extent of the resuspension was governed by 
a modified Shields number, 

9 ~iQ 
K = 16 B 3 g ( p 2  - -  p~)' [1] 

which provides a measure of the ratio of viscous forces to those of gravity. Here 2B refers to the 
vertical spacing of the duct, Q is the volume flux of the suspending fluid per unit depth, #t and 
p~ denote, respectively, the viscosity and the density of the suspending fluid, P2 is the density of 
the suspended solid particles and g is the gravitational constant. It turns out that the dimensionless 
height h, and the particle concentration profile $ (y) of the resuspended layer, as well as the velocity 
profiles within both the clear fluid and the suspension, are uniquely determined via the solution 
of the mass and momentum conservation equations if the two basic parameters $, and K are given 
and the suspension is modelled as a Newtonian fluid whose effective properties depend on the 
concentration in a known way. The particle concentration profile $ within the flowing suspension 
will of course be non-uniform across the duct and will become uniform only in the limiting case 
of large Shields numbers. 

In principle, it should be possible of course to formulate the stability problem in terms of an 
Orr-Sommerfeld equation which would include terms arising from the continuous variation of 
with position. However, due to the rapid change of $ in the vicinity of the interface beneath the 
clear fluid, as shown in figure 2, and to the presence of its derivatives up to third order in the 
corresponding Orr-Sommerfeld equation, any attempt to solve the latter is bound to encounter 
numerical difficulties such as very slow convergence and large CPU times. But, in view of the fact 
that, in general, the particle concentration is almost uniform within the flowing suspension except 
within a thin transition layer underneath the suspension-clear fluid interface, it appears reasonable 
to perform the stability analysis by modeling the suspension as a Newtonian fluid with 
position-independent physical properties. Thus, the base state is taken to consist of a stratified shear 
flow of two superposed fluids of different viscosity and density with parabolic velocity profiles, 
which satisfy the requirement that the velocity and the shear stress be continuous at the interface. 
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Figure 2. Part icle concentrat ion profiles for ~, = 0.1 (dashed curves), ~, = 0.3 (solid curve) and K = 10 -3, 
10-2 lO-l. 
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Moreover, in view of the analysis presented cartier (Sehaflinger et al. 1990), the height h, of  the 
rcsuspended layer and the mean particle concentration, 

_ 1 fh, 
~ =hi J0 ~b(y) dy, 

can be taken as known functions of the two independent parameters of the base state, viz. x and #b,. 
The linear, temporal stability of two superposed fluids in a channel flow was studied by Yih 

(1967), Yiantsios & Higgins 0988) and several other authors (Kao & Park 1972; Hoopcr & Boyd 
1983, 1987; Hinch 1984). Yih (1967) considered long-wavelength disturbances and demonstrated 
that viscosity stratification alone can give rise to an interracial mode which is unstable even for 
vanishingly small Reynolds numbers (Re). Yiantsios & Higgins 0988) extended Yih's work and 
investigated the effects on the interracial mode of several geometric and physical parameters, such 
as the thickness ratio, the viscosity ratio and the density ratio of the two fluids, as well as the surface 
tension, each of which was allowed to vary independently. In addition, they reported that, at 
sufficiently large Re, the flow may also bc unstable to a shear mode, which is essentially a 
disturbance of the Tollmicn-Schlichting type modified by the presence of an interface. 

Wc shall study both the temporal and the spatial stability of this flow by solving the eigenvalue 
problem for the Orr-Sommerfcld equations subjected to appropriate boundary conditions at the 
walls and matching conditions at the interface. This is accomplished numerically using the 
well-known shooting method with ortho-normalization (Shaqfch & Acrivos 1987). We find that, 
whereas the shear mode, similar to that noted by Yiantsios & Higgins (1988), is unstable at large 
stability Rc values of order l& (the Rc to be defined later is based on Q and on the properties 
of the suspending fluid), the interracial mode is unstable at small and moderate Re, a parameter 
range of practical interest in the study of the viscous resuspcnsion. Thus, we shall focus on the 
instabilities duc to this interfacial mode. Also, wc shall restrict our analysis to cases for which the 
whole sediment has resuspended, because a sediment layer at the bottom of the duct will exist only 
when Q is small, in which the flow would be expected to be less unstable. 

Wc shall also study the nature of this instability, i.e. whether it is convective or absolute [see 
Bcrs (1983) for a rigorous discussion of absolute and convective instabilies], and shall show that, 
for the case of a suspension of spherical particles in water and flowing in a duct with vertical spacing 
0.02 m, this is always convective---thereby implying that unstable interracial disturbances will grow 
spatially in the resuspension flow. Moreover, we shall find that Gaster's relation (Drazin & Reid 
1967) between the temporal and the spatial modes applies with good accuracy within the parameter 
range covered by our calculations, and that therefore both the temporal and spatial analyses arc 
equally capable of describing the spatial development of interracial waves. 

In the ncxt section we shall state the mathematical problem for the linear stability analysis and 
describe our numerical procedure. The numerical results will then bc presented in section 3, and, 
finally, in section 4, the applicability of our stability calculations (which wcrc based on a simplified 
model of the base state) to physically relevant rcsuspension flows will be discussed. 

2. THE LINEAR STABILITY ANALYSIS 

2.1. Mathematical formulation 

The base flow consists of  two parabolic velocity profiles U non-dimensionalized by Q/2B: 

U, = K[C(y - 1) - ½(y2 _ 1)] [2a] 

and 

where 

[2b] 

C = - 

2 1 +  - 1  h, 
[3] 
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and 

K = { ~ - e I ~ + h ' ( ~ - 1 ) ]  + h-' (h'2 - 1 ) 2  \ 3  + ( 1 -  7#)h'22/~ (C  - ~ ) } - '  . [4] 

Here y is the vertical coordinate non-dimensionalized by the total spacing 2B, and/~ is the ratio 
of the effective viscosity of the suspension to that of the clear fluid. This effective relative viscosity 
will be represented by means of the empirical relation (Leighton & Acrivos 1986) 

( 1 -I- ~ , [51 

/~= l _ ~ 0  

where ~b0 is the maximum particle concentration of a settled bed assumed to equal 0.58 in our 
calculations. In addition, C denotes a constant which is obtained from the matching conditions 
at the interface, and K refers to a dimensionless pressure drop coefficient, subscripts 1 and 2 
distinguish between the clear fluid and the suspension, respectively. 

Since a detailed derivation of the governing equations for the linear stability analysis has already 
been given by Yih (1967), we shall present, in what follows, only some of the key steps. Thus, if 
we consider two-dimensional disturbances, we let • and ~ be the perturbation stream functions 
within the clear fluid and the suspension, respectively, which automatically satisfy the continuity 
equations. The velocity components become, therefore: 

Ul = UI  "31- ~ , y ,  Vl = --~.x; [6a] 

and 

u2 = U2 + ~y,  v2 = - ~',x. [6hi 

The linearized equations and the appropriate boundary conditions for the disturbed flow are then 
expanded in the usual manner in terms of normal modes with an exponential time factor. 
Specifically, we have for the perturbation stream functions 

@(x, y, t) = ~o(y)exp[i(otx -cot)] [7a] 

and 

~U(x, y, t) = ~ (y)exp[i(otx -cot)], [7b] 

where ~o (y) and ¢ (y) are the amplitudes of the disturbances and t is the time rendered dimensionless 
with 4B2/Q. In order to determine whether the flow is absolutely or convectively unstable, we shall 
take both the frequency co and the wavenumber ct to be complex quantities, i.e. we let 

co = cor + ico, and ~t = ~t r + i~t,. 

Then, for a temporal analysis, we take the wavenumber ~t as real, while for a spatial analysis, we 
prescribe a real frequency co. In view of [7a, b], we then obtain from the equations of motion the 
well-known Orr-Sommerfeld equations for the clear fluid, 

i 
(0tUl -- co) (q~" -- ~2~o) -- 0tU'(q) = - - -  ( ~ "  - 20t2~o " + ~t4q~), [8] 

Re 

and for the suspension, 

/~ (~O" - 2ct2~, " + ~4~0), [9] (~tU2 -- co) (~b" - ~t2~k) - ¢tU'2'd/ = --i Re(l + ~E) 

respectively, in which primes indicate differentiation with respect to y. Moreover, on account of 
the boundary conditions of no slip and no penetration at the walls, as well as the requirement that 
the velocity and, in the absence of surface tension, the stresses be continuous at the interface, we 
obtain in the linear approximation that 

q~ = ~0' = 0 at y = 1, [10a] 

~k = ~k' = 0 at  y = 0,  [10b] 
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and 

Here 
by 

~o - ~ , = 0  

~o' - q/ '  = ~ ( u ;  - G )  

~o" - # ~ , "  = ~2~o0~  - 1)  

at y = h,, 

at y = h,, 

at y = h, 

[10¢] 

[10dl 

[10¢] 

• 9ct2~ tp tp" 3a2~0 ' - # ( ~ "  3ct2~h ') 
2r ¢tUi -- o~ 

+ i Re{(aUl -- co) [(I + ~E)q/' -- ~o'1 

- a[(1 + ~E) U~q/ -  U~o]} at y =h , .  

Re = Qp~/#~ is the stability Reynolds number which is related to the Shields 

[lOt'] 

number 

Re = ~r:E Ga, [111 

with the Galileo number Ga = 8B3gp ~/#~ being constant if the spacing of the duct and the physical 
properties of the suspending fluid are given. In addition, E = (P2-  P~)/P~ denotes the relative 
density ratio of the particles to the suspending fluid• We note that, in the stability analysis, the 
gravitational constant appears only on the l.h.s, of [10f], where it is incorporated in the base state 
parameter r. 

Equations [8]-[10] constitute an eigenvalue problem for the complex frequency co or for the 
complex wavenumber ~, respectively• Note that the parameters h t and 4~ are taken from the base 
flow analysis as being known functions of the independent variables ~s and r and that the new 
independent parameters introduced by the stability formulation are Re (or Ga) and E. 

2 2  Numerical procedure 
Several numerical methods have already been developed for solving the Orr-Sommeffeld 

problem, among which are the well-known shooting method with an ortho-normalization 
procedure and the compound matrix method (Drazin & Reid 1967). At first, as a cross-check, the 
eigenvalues of our problem were calculated using both these methods and the results were found 
to be in good agreement. But since the former turned out to have a larger convergence radius, it 
was employed almost exclusively for most of the calculations. 

The essence of the shooting method with ortho-normalization, which has already been described 
in detail in an earlier publication (Shaqfeh & Acrivos 1987), is briefed as follows for the case of  
the temporal analysis. We first define the vector functions 

¢ = (~o, ~o', ~o", ~o'), g, = ( ¢ , g/ ', g, ", ¢ ") [121 

and express each one of them as linear combination of two solutions which satisfy the boundary 
conditions at y = I and y = 0, respectively, i.e. we let 

¢ =C,¢)+C2~2, ~' =(~t +(~2~2, [13] 

and 

and 

tp~ = (0, 0,1, 0), tp2 = (0, 0, 0,1) a t y = l  [14] 

~t =(0 ,0 ,0 ,  1), ~2 =(0,0 ,  1,0) at y =0.  [15] 

Then, for a given set of parameters a, $~, u, E and Re and an initial guess for the eigenvalue co, 
we integrate [8] and [9] by means of a standard fourth-order Runge-Kutta  algorithm, using [14] 
and [15] as initial conditions, respectively, up to the interface y = h,. Each integration interval (1, ht) 
or (0, ht) was divided into 100 sub-intervals, and the integration was performed within each one 
of them until a solution accurate to eight-digits was obtained through mesh refinement. Then, the 
two solutions ~l ,  ~02 and ~t,  ~'2, respectively, were verified to be linearly independent using a 
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D(o~, CO ) = 

with 

method introduced by Conte (1966) and, if necessary, two new linearly independent solutions were 
generated by the Gramm-Schmidt  ortho-normalization procedure. At that point, the integration 
was allowed to proceed using the new solutions as starting conditions. 

At the interface y = h, the matching conditions yield a set of homogeneous linear, algebraic 
equations whose complex determinant gives the dispersion relation 

~l  ~o2 - ~ l  - ~ 2  
¢P~ + A,(pl ~ + A,~ 2 --~//~ -~b~ 
~p',' + A~o, ~o~' + A~p~ - ~ 7  -/~¢~' 

~o';' - A,~o~ + A3,p, ~;" - A,,p'~ + A3,P~ -/~¢/7 + A5¢ ~ -~¢'~" + A ~ , ;  [16] 

and 

• ( u ~ -  u~) 
A t =  

~U~ - co 

A 2 = ~2(1 --/~), 

A3 = i~ R e I f ' ,  - (1 + ~E)U~ 

A 4 = 3~ 2 + i Re(~Ul -- 09) 

] 2r  Re(-~l  -- co) ' 

[17a] 

[17b] 

[17c] 

[17d] 

A5 = i Re(l + ~E) (~Ut - 09) + 3p~ 2. [17e] 

Therefore, the problem reduces to that of  finding numerically a complex eigenvalue co by requiring 
that 

D(co) = 0. 

Of course, since our initial guess for co will not satisfy this requirement, we obtain 

D(co) = Dl. 

But, because D (co) is an analytic function of  co in the neighborhood of  the actual eigenvalue (Mack 
1976), we are able to generate a new and better guess for co by means of  the recursion formula 

('Ok - -  ( -Ok-  1 
COk + I = COk Dk.  [18] 

Dk -- D k -  1 

But, in order to make use of  [18], we need to repeat the entire integration procedure for a slightly 
different guess, co2 = co~ + 5, with e being an arbitrary small complex number to obtain 

D (co2) = D 2 .  

Then [18] is applied until the following convergence criteria are satisfied: 

[ D k - - D k _ l l < ~  lO-l°; ICOk--COk--II~<I0--8; I D k - - D * - t l  < ~ l O - t  [19] 
[COk[ [Dir 

In addition, in order to enhance the rate of  convergence, a parameter continuation in ~ (or 
sometimes in other parameters, such as h, or ~) is employed, by selecting the actual ¢igenvalue co 
at a certain wavenumber • as the initial guess for the eigenvalue at the wavenumber ~ + A~, where 
Act is a small increment in the wavenumber ~. In this way, the convergence criteria [19] could be 
met in most cases after 6-8 iterations. 

3. N U M E R I C A L  RESULTS 

In this section we shall present and discuss our numerical results which were obtained with the 
Galileo number in [11] kept constant at 7.9 x 10 7, corresponding to water at 20°C and to a duct 
spacing 2B = 0.02 m. The other parameters q~,, E and x (or Re) were set at varous values of  practical 
interest and, in particular, Re was allowed to vary up to O(103). Within this range of Re, the 
instabilities are due to the interfacial mode, which was traced by means of  parameter continuation, 
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Figure 3. Height ht (solid curves) and mean particle concentratmn ~ (dashed curves) of the suspensmn 
vs log(K) for ~, =0.1, 0.2, 0.3. 

starting with a pair of values for the frequency and the wavenumber given in a previous publication 
(Yiantsios & Higgins 1988). 

To begin with, we depict in figure 3 the variation of h, and ~, obtained from the base state 
analysis (Schaflinger et al. 1990), as functions of the modified Shields number ~ for 0, ffi 0.1, 0.2, 
0.3. It is seen that, with increasing of K, both h, and ~ (and, hence, the viscosity ratio #) are reduced, 
as required by particle mass conservation in the base state flow. We note here that, due to the 
dependence o f#  on 0, given by [5], the difference in # for the different values of ~, shown in figure 3 
is considerable, even though the variation of ~ with ~, is not that great. 

We first tried to establish whether the flow was absolutely or convectively unstable. This was 
done by examining the location, in the complex m-plane, of the double roots (~0, m0) of the 
dispersion relation [16] which satisfy simultaneously D(~, m) ffi 0 and OD/O~ = 0 (Triantafyllou & 
Dimas 1989). Then the flow instability is of the absolute type if one such double root can be found 
which is located in the upper-half co-plane and which is formed from the coalescence of two roots 
of the dispersion relation [16] corresponding to one left- and one fight-traveling wave. But since, 
within the parameter range covered by our calculations, all of the double roots which we found 
were located (as illustrated in figure 4 for a typical case) well below the real axis o~, = 0, we conclude 
that the instability, if it exists, will always be convective for the particular system under 
consideration. 

It is known (Bets 1983) that the existence of a convective instability implies a spatially developing 
response to a steady harmonic excitation. Specifically, for the present resuspension flow, it implies 
that unstable interracial waves will grow in space. In order to find the properties of such waves, 
we performed both a spatial and a temporal analysis and compared their predictions by converting 
the temporal amplification rate oJ, into the spatial amplification rate -~,  using Gaster's relation 
(Drazin & Reid 1967, p. 352): 

O31 
- ~, = - - ,  [20]  

Cg 

where c s = Oosr/a~ denotes the group, wave velocity. This relation has been proved valid if the 
amplification rates of the disturbances are small. Typical comparisons are shown in figure 5 in the 
form of spatial amplification rates for ~ = 0.1, Re - 1560 and ~, = 0.1, 0.2, 0.3, respectively, where 
the dashed curves represent the predicted spatial amplification rates converted from the results of 
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the temporal analysis, and the solid curves are from the spatial analysis. We see that the two sets 
of  curves almost coincide. In fact, the agreement is even better when E and/or Re are smaller, 
because the corresponding amplification rates are smaller. Thus, we conclude that both the 
temporal and spatial analyses are equally capable of  describing the spatial development of 
interfacial growing waves in this particular resuspension flow, and hence, in what follows, we shall 
present our numerical results only in terms of  the temporal mode. 

Figure 6 depicts the topology of the neutral stability curves in the Re-~, plane for 0, = 0.1, 0.2, 
0.3 and E = 0.01 (solid curves), and for 4), -- 0.2 and ~ -- 0.001, 0.1 (broken curves). The arrow to 
the left of some of the curves indicates that a further decrease in Re will lead to the formation of 
a sediment layer at the bottom of the duct. We see that the resuspension flow is, in general, unstable 
and that, in the case of a small feed concentration ~, and/or of a large density ratio E, instabilities 
arise even when a sediment still exists at the bottom of the duct. We also see that each neutral curve 
consists of one lower and one upper branch (for 0,--0.3,  the upper branch is located in the 
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Arrows represent the values of  Re below which a sediment layer forms in the base state 
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region of large wavenumber and is not shown in the figure), and that the turning point occurs at 
an Re value which increases with an increase in the parameters ~, and e. Therefore, the wavelengths 
of the unstable disturbances are within two distinct ranges, long and short respectively, and, with 
increasing Re, interfacial disturbances over the whole spectrum of wavelengths will finally become 
unstable. 

The instability characteristics of these interracial disturbances for a wide range of wavelengths 
are illustrated in figures 7-9, where the real and imaginary parts, respectively, of the frequency co 
have been plotted vs the real wavenumber ~, for a relative density ratio E = 0.01, and for a variety 
of values of the feed concentration ~, and of Re. It is of some interest to note that, as seen in 
figures 7(a), 8(a) and 9(a), the frequency cor is almost linear in the wavenumbcr ~r except when the 
wavenumbers of the disturbances are small. On the other hand, we see in figures 7(b), 8(b) and 
9(b) that each curve of the amplification rate co, vs a, has, in general, two peaks; and that the 
corresponding magnitudes of co, at these peaks vary in a somewhat complicated way with the 
parameters ~s and Re. Specifically, when the feed suspension is dilute, e.g. in the case of ~b, = 0.1, 
the unstable modes at the first peaks have relatively low growth rates and that the fastest growing 
disturbances are those at the second peaks with the wavelengths approx. 0.6 times the spacing of 
the duct. However, the amplification rates at the first peaks become more substantial as the feed 
concentration increases. In fact, when ~, = 0.3, the largest amplification occurs at the first peak 
until Re is sufficiently large that the amplification rates at the second peaks again overtake those 
of the first. It should be noted that, since the wavelengths of the unstable modes at the second peaks 
are now approximately one-fifth the spacing of the duct, there is some question as to whether their 
dominant role is spurious--in that it could be due to the simplifications introduced in the base flow 
velocity and concentration profiles prior to performing the stability analysis. We shall discuss this 
aspect in detail in the next section. 

We also see from figures 7(b), 8(b) and 9(b) that, for given e and Re, the maximum amplification 
rate, which we shall denote as (co,)n,~, decreases considerably (note the different scalings in these 
figures) as the feed concentration ~, is increased. This implies that a reduction in the particle 
concentration of the feed suspension will enhance the degree of instability in the resuspension flow. 
This enhancement is mainly due to the fact that, as shown in figure 3, the height, h,, of the 
resuspended layer in the duct decreases dramatically with a decrease in ~, as required by particle 
mass conservation in the base flow. Recall that the asymptotic analysis for short-wave instabilities 
in the stratified flow of two immiscible fluids (Yiantsios & Higgins, 1988) showed that, in the 
absence of gravitational and surface tension effects, the amplification rate co, is proportional to the 
square of the shear rate at the interface. Such a proportionality was also given by Hinch (1984) 
who provided a simple physical explanation for the instability mechanism at the interface. Because 
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the shear rate at the interface is a monotonically decreasing function of  h,, as can be easily verified 
from [2]-[4], the reduction in the feed concentration ~, leads to the pronounced increase in the shear 
rate and, hence, in (CO,)m~x. 

In addition, as remarked by Schaflinger et  al. (1990), the height h, of  the resuspended layer is 
restricted by the existence of  a plane of  vanishing shear stress, which, in the limit of  infinite x, 
coincides with the interface between the resuspended layer and the clear fluid above it. This limiting 
case has important implications as regards the stability of  this system because the interracial mode 
is neutrally stable when the slope of  the base velocity profile vanishes at the interface (Yiantsios 
& Higgins 1988). Consequently, all interracial disturbances will trend towards a neutrally stable 
state in the limit of  infinite x or Re. This trend can be seen in figures 7(b), 8(b) and 9(b) and is 
more clearly illustrated in figure 10, where the maximum amplification rate (r~,),= is shown for 
~b, = 0.2 and for E = 10 -3, 10-:, 10-'. We see that, when ~ = 10 -3, this maximum amplification rate 
approaches zero as Re limits approx. 3000, where it can be ascertained that the shear rate at the 
interface h, is becoming vanishingly small. For larger E, the same trend can be observed but at much 
larger Re. We also see that, with increasing Re, (CO,)m=, first increases sharply until it reaches a peak 
value and then decreases gradually, thereby indicating that the disturbances restabilize. This 
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Figure 10. The maximum amplification rate (O),)ma x for q~---0 2 and ~ = 10 -3, 10 -2, I0 -t. 

prediction regarding the restabilization of the interfacial mode was also reported previously by 
Shaqfeh & Acrivos (1987) for the convective flow which arises in inclined particle settlers. 
Nevertheless, it should be emphasized that this does not imply the existence of an experimentally 
observable restabilization of unstable interfacial waves in such flows because, on account of 
three-dimensional disturbances, an increase in Re does not restabilize the flow, but rather changes 
the direction of the growing modes and, more specifically, that of the most rapidly amplified mode, 
which in general is oblique (Magen & Patera 1986). Also, on account of the fact that this 
restabilization is predicted to occur in the range of large Re, it is natural to expect that the shear 
mode of the Tollmien-Schlichting type may become unstable and dominate the instability. 

We also see from figure 10, that the peak value of (CO,)max increases with an increase in the relative 
density ratio E. The reason for this is somewhat subtle. Again referring to figure 10, we note that, 
for increasing E, the maximum amplification (CO,)max attains its peak value at larger Re but, on the 
other hand, in view of [11], at smaller ~. An increase in Re obviously entails a larger inertial effect 
on the instability of the interfacial mode, whereas on account of the fact that ~ and, hence,/z are 
monotonically decreasing functions of r, a decrease in r enhances the viscosity stratification at the 
interface and therefore the driving force for the instability. Thus, the combination of these two 
effects, which follow from an increase in e, leads to an enhanced degree of instability in spite of 
the stronger stabilization introduced by the greater density stratification• 

4. SUMMARY AND DISCUSSION 

The results of a linear stability analysis were presented dealing with the formation of interfacial 
waves in a two-dimensional Hagen-Poiseuille resuspension flow. The non-uniformity of the particle 
concentration within the suspension was ignored, so that the base system consisted of a stratified 
shear flow of two superposed fluids with different but position-independent physical properties. The 
spacing and the mean particle concentration of the suspension were calculated from the solution 
of the laminar resuspension flow problem described previously (Schaflinger et al. 1990). 

Numerical solutions of the resulting Orr-Sommerfeld system of equations, for the special case 
of a suspension of spherical particles in water and flowing in a duct with vertical spacing 0.02 m, 
were obtained by means of a classical shooting method with ortho-normalization. The compu- 
tations focused primarily on the instabilities due to the interfacial mode. It is found that the 
resuspension flow is always convectively unstable for this caset and that the amplification rate of 
the interfacial disturbances first increases sharply with increasing stability Re until it reaches a peak 
value beyond which it begins to decrease gradually. It is also shown that a reduction in the particle 

?This, of  course, does not exclude the possible existence of  an absolute instability for a different range of parameters. 
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concentration of the feed suspension and/or an increase in the relative ratio of density of the solid 
particles to that of the suspending fluid will enhance the degree of instability in such a flow. 

The principal assumption made in this work, that the particle concentration in the resuspended 
layer is uniform, restricts the range of disturbance wavelengths for which the present theory is 
applicable. Specifically, under this assumption, our analysis obviously no longer applies for 
wavelengths which are shorter than the thickness of the transition layer within which, as shown 
in figure 2, the actual concentration distribution ~(y)  varies rapidly. In fact, one can expect that 
the predicted short-wavelength instability could have been eliminated or reduced if the continuous 
variation with position of the actual concentration profile in the real resuspension flow could 
somehow have been taken into account. In the case of shearing flows of two homogeneous fluids, 
it has been shown (Hinch 1984; Yiantsios & Higgins 1988) that the instability of short-wavelength 
disturbances may always be stabilized either by surface tension or by diffusion, depending on 
whether the two fluids are immiscible or miscible. The stabilizing effect of diffusion on short-wave 
instabilities was also demonstrated for the problem of miscible displacements in porous media (Tan 
& Heresy 1986), where it was found that, whereas the amplification rate of unstable disturbances 
increases with increasing wavenumber without bound if the diffusion effect is ignored, a cut-off in 
the instability wavenumber is always encountered whenever this effect is taken into account. In the 
present problem, where surface tension is absent, the actual particle concentration and, hence, the 
viscosity beneath the interface are rapidly but continuously varying functions of position. Thus, in 
view of the fact that diffusion smooths concentration profiles, the assumption in our analysis that 
both these profiles are uniform, which leads to a jump in concentration and viscosity at the 
interface, is equivalent to ignoring diffusion effects in systems of two miscible, homogeneous fluids. 
Therefore, we should expect our analysis to overestimate the influence of short-wavelength 
instabilities. 

Nevertheless, we feel that the major, as well as the more practically interesting predictions of 
our simple model, such as the predicted dependence of the instability on the parameters Re, ~s and 
E, are sound (at least qualitatively) because these predictions are based essentially on the shearing 
mechanism (Hinch 1984), which generates the instabilities at the interface, and on the way in which 
the amplification rate of the unstable disturbances varies with the shear rates and the viscosities 
on either side of the interface. In addition, as seen in the last section, the wavelengths of the most 
amplified modes are, in general, large compared to the thickness of the transition layer in the base 
state concentration profile. Thus, there is reason to believe that the amplification rates of these 
modes would not be altered substantially if the non-uniformity of the actual particle concentration 
was taken into account. A possible exception to this may be in the case ~, = 0.3, where the second 
peaks of the co, curves in figure 9(b) occur at values of the dimensionless wavelength approximately 
equal to 0.2, which appears to be in a range comparable to the thickness of the transition layer. 
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